JALvZ2 PRAGMAS

| Contents | iii

Contents

(@ gF=To] > gt I W 01§ o o [Fox i o o PSR 5
Chapter 2: Chip Configuration...........ccceecieiiieiie e 7
LI =2 X 1 SO 7
TARGET CLOCK ...1.1vvvvvveeeeessssssssssssssse s ssssssssss s sss5sss s 7
TARGET FUSES.......ocoovvrrrimsssssmssssssssessssssssssssssssssessssssssssssssssssse s ssssssssssssssss s sssssssssssesees 7

LI AN R = e o1 = L 8
Chapter 3: Compiler Configuration.........cccovereieeiireiie et 9
2.1 BOOTLOADERooovvvvvveenssssssssisssssssssssssssssssssssssssssss oo sssssssssssssess s 9
BLOADERoovvvvvvvveessesssssssssss s ssssssssss s sssssss s 9

LOADERLS [CEXPI].uveeeeeeeuerereetestesutstesteseessessesseseessssseesessessessesaesseseeseessessessensensensensenessessessessessessens 9
LONG_START ...oovvvrrrsesessssssssssssesssssssssssssssssssess s ssssssssssssssess s ssssssss s ssssssssssssseess oo 9

RICKPIC..ooevvvevveeess s sssssss s 9

CLEAR oo ssss s 10
EEDATA .ooooorteeeessvsssssseee s sssss s 10

FUSE 11 111see110vvss s sssssss 12555 10
IDDATA oo ssssss s ssss s 10
TASK oo ssssss s 10
Chapter 4: Global Configuration..........cccccveceeiireieerie e 11
T PR RR 11
NAIME . ettt et e skt e et e e s bt e e et e sb e e e s b e e eae e e A Ee e she e e R e e eRe e e beeeRe e e beeenreebeesareeneenanas 11

S A OSSPSR 11

S I TSP RTRR 11
Chapter 5: PROCEDURE/FUNCTION Configuration..........cccceeeeeveeciveesennnne. 13
FRAME 1o sssssss s 13
INLINE o1 svvveeeesee e ssssssss 1125 13
INTERRUPT ..ccccceeevtveveeeeee s ssssosssssss s sssssss 5 13

H INORMAL ..o ssvvveies s sssssssss s 14

FAST oo 14

RAW ...ooo et ssssmssee s 14
JUMP_TABLEcooovvoeesiesssiisssssssses s sssssssssssssse s sssssss s 14
KEEEP....vvvvvveeee s ssssssss s 14
NOSTACK oo 14
Chapter 6: Optimization PRAGMAS..........oo e 15
EXPR_REDUCEoocccccccvvevvveseeesssssssssssssss s sssssssss s ssssssss s 15
CEXPR_REDUCEcoovvvessesssssssssssssssssssssssssssssss s ssssssssssssssses s sssssssssssssssssssssssssossssssssess s 15
CONST_DETECT coovvvvvvveeeeessssssssssssssssssesssssssssssssssssssss s sssssssssssssses s ssssssssssssssessssssssssssssssssess oo 15
LOAD_REDUCE.........c.coovvvemessssssssssssssssessseessssssssssssssssses oo 16
TEMP_REDUCE.......oooooosssssssmsessssssesssssssssssssssssssesssssssssssssssssssss s ssssssssssss s sssssssssssssees s ssssnssssssseees 16

VARIABLE _FRAME. ... e e 16

(O gF=To] = g A VoY= o o T o TSRS 19
L TP P PP UP TR PPPTPRORN 19
N O 1 = 5 PSSR 19
CONVERSION.......ccetiitieiietiesit ettt ettt st sae e tesbe e e sb e e beese e beeaeasbeeaeesseeaeesseeaeesae e besaeenbesaeenbeensenbeensesneeneenns 19
D1 = O I AV SO 19
VIS oo 20
RANGE 20
Y 1N O S O)V = I 1 SRR 20
TRUNGCATE. ..ottt sttt et et e te bt e besbe e beehe e beeae e bt eaeesaeeaeesae e e e sbe e besaee b e eneanbeensanbeensesneennas 20

Chapter 8: Chip SPeCifiCatioN.........cccoeeiiieiieceecee e 21
CODEvvvvveveee s 2ss 21
DATA ooeeeveeeeeee s ssisss s 258 21
EEPROMoocvvveeeesessssssssssseseee s ssssssss 155555 21
FUSE_DEF1vvvcvvveeeeeesssssssssssssee s ssssssss 558 21
D) ssseses e 2
STACK o2 2
TARGET CPU.....oooorotiessimisssssseessssssssssssssssssssss s sssssssssss s ssssss s 2
TARGET BANKoooovrtrrstttmmeieseseeesssssssssssssss s ssssssss s sss s 2
TARGET PAGE........ooovvorrisssiimissssssesssssssssssssssssssess s sssssssssss s sssssss s 23
TARGET INSTocvvvveeeeesesssssssssssssssss s ssssssssssssse s sssssss s 23

(O{gF=To1 (= e A B T= o 18 o o 1 o Vo PR 25
CODEGEN.........oovvveeessessssisssssssesssssssssssssss s sssssss s 25

Chapter

1

Introduction

There are many extrathings the compiler either needs to know to do itsjob, or modify its behavior to suit a particular
need. Thisinformation is passed to the compiler with something called a PRAGMA.. Thisfile describes every
PRAGMA the compiler understands for JAL compiler version jalv25r4 or higher.

See the JALv2 documentation for definitions and conventions. Any time multiple options are allowed, the default
option is preceded with a™'. An {empty} option isinterpreted as the default option.

Chapter

2

Chip Configuration

Select various attributes of achip.

Target CHIP
Syntax:

PRAGVA TARGET CHI P chi pnane
Analogous to:
CONST target _chip = cexpr

The compiler will look for a constant named "PIC_chipname' and assign it to target_chip. This might be used by some
libraries to modify their behavior based on the chip in use. The compiler itself does not use this information.

TARGET CLOCK

Format:

PRAGVA TARGET CLOCK cexpr
Analogous to:
CONST target _cl ock = cexpr

Set the target clock rate to cexpr in Hz. The compiler only needs thisif the usec_delay statement is used.

TARGET FUSES

Format:

PRAGVA TARGET FUSES [cexpr0] cexpr
Analogous to:

CONST _config = cexpr
Or:

CONST _config[cexpr0] = cexpr

cexprO is only used when multiple config words exist in which case 0 is the first config word, 1 the second, and so on.

The configuration words define how some parts of the destination chip are used. While it is possible to set the fuses
directly, it is generally better to use the "TARGET opt tags' construct below.

TARGET opt tags

Format:

PRAGVA TARGET opt tags

This accesses the mnemonic symbols defined with PRAGMA FUSE _DEF. Thisis preferable to setting the fuse
values directly, because (1) mnemonics are more easily readable than numeric values, and (2) the same mnemonic can
be setup differently on different chips.

Chapter

3

Compiler Configuration

Configure compiler code generation policies.

2.1. BOOTLOADER

Format:

PRAGVA BOOTLOADER { BLOADER | LONG START | LOADERL8 [cexpr] |
RI CKPI C }

Set the user code preamble as follows:
BLOADER
Pre-amble:
ORG 0x0003
GOTO _pi c_pre_user

LOADERI18 [cexpr]
Pre-amble:
ORG cexpr -- (or 0x0800 if cexpr is not present)
The interrupt vector, if used, is put at cexpr + 8
LONG_START
Pre-amble:
ORG 0x0000
BSF/ BCF _pclath, 4

BSF/ BCF _pclath, 3
GOTO _pi c_pre_user
NOP

RICKPIC

Pre-amble:

ORG 0x0003
GOTO _pi c_pre_user

nb: if "PRAGMA INTERRUPT RAW" is used, the interrupt routine must not exceed one page (minus a few bytes).

CLEAR

Format:

PRAGVA CLEAR { YES | NO | }

YES -- Codeis generated to set all user-datato O
* NO -- No such code is generated

nb: volatile variables, and variables explicitly placed by the user are * not* set to 0.

EEDATA

Format:
PRAGVA EEDATA expr;[',"expr;1...]

Places data into the EEPROM (defined with PRAGMA EEPROM..). The first time this statement is executed, the
data are placed into location 0 of the EEPROM. Each time after the data are placed in consecutive locations.

FUSE

Format:

PRAGVA FUSES { YES | NO | }

* YES-- The "__config' lineiswritten to the assembly file

NO -- The"__config' lineis not written to the assembly file

It is often convenient * not* to program the CONFIG word (for example, when using a boot loader). This suppresses
that programming.

IDDATA

Format:

PRAGVA | DDATA expr;[', " expr;1...]

Places datainto the ID area (defined with PRAGMA 1D...). Thefirst time this statement is executed, the data are
placed into location O of the ID. Each time after the data are placed in consecutive locations.

TASK

Format:

PRAGVA TASK cexpr

Set the maximum concurrent task count to cexpr. It is generally better to set thisin your program, instead of doing so
with the compiler option ("-tasks") asit is unlikely to change.

nb: When multiple tasks are used, the main task requires one task slot.

Chapter

A

Global Configuration

These can all be used globally.

ERROR

Format:
PRAGVA ERROR
Causes an error to be generated. This has been superseded with the" ERROR" command (see the JALV2 reference

guide).

NAME

Format:
PRAGVA NAME str

Causes an error to be generated if the current source file name (excluding the .jal extension and path) doesn't match
Str.

SIZE

Format:
PRAGVA S| ZE

Anything physically following this pragmawill be optimized for size. See notes under 'PRAGMA SPEED'.

SPEED

Format:
PRAGVA SPEED
Anything physically following this pragmawill be optimized for speed. Currently this only affects the generation of

the shift operators -- loops will be unrolled for SPEED, but used for SIZE. In the future this could affect other loop
unrolling.

Chapter

5

PROCEDURE/FUNCTION Configuration

These must be used with a procedure and/or function and are only in effect for the procedure/function in which
they're used.

FRAME

Format:
PRAGVA FRANME

Used within afunction or procedure, declares that all variablesin the function or procedure will be allocated into a
single “frame'. This guaranteesthat all local variables will be allocated in the same data bank, so bank switching to
access variables will be minimized. This can also result in “out of data space' errors due to memory fragmentation
when plenty of spaceis otherwise available.

Normally variables are allocated at the lowest address into which they will fit. This makes much better use of
the memory, but can cause variablesin the same function to be allocated in separate banks which resultsin bank
switching overhead.

nb: Any re-entrant function, and any function called through a function pointer (aka, pseudo-variable function) will
allocate per-frame regardless of this setting.

INLINE

Format:
PRAGVA | NLI NE

Used within a function or procedure, declares that this function or procedure will not get a separate body, but rather
will be copied directly into the calling code.

nb: If a procedure or function marked “inline' is executed as volatile parameter, it will get abody.

INTERRUPT

Format:
PRAGVA | NTERRUPT { FAST | RAW| NORMVAL | }

This must be used within a procedure that takes no parameters. It defines the procedure as an interrupt entry point.
Such a procedure is added to a chain of procedures executed whenever an interrupt hits. Once a procedure has been
marked interrupt, it cannot be called directly by the program.

* NORMAL
W, STATUS, PCLATH, FSR, TBLPTR and _picstate are saved on ISR entry and restored on exit.

FAST

_pic_stateis *not* saved or restored. In this case, the interrupt procedure should be written entirely in assembly to
avoid corrupting the pic_state area.

RAW

None of the normal pre-amble or cleanup codeis generated. The user is entirely responsible for the interrupt. The
code is guaranteed to be placed at the interrupt vector.

nb: thisfeature isn't yet available

JUMP_TABLE

Format:
PRAGVA JUVP_TABLE

This generates awarning, but does nothing. It's here for backward compatibility.

KEEP

Format:
PRAGVA KEEP { BANK | PACE } ["," { BANK | PAGE } ...]
This guarantees the page and/or bank select bit manipulations will not be removed. Normally, they are removed

if analysis shows them to be unnecessary. Thisis only useful to guarantee certain timings. This effects the entire
procedure or function in which it is declared (not just from point of declaration).

NOSTACK

Format:
PRAGVA NOSTACK

Used within a procedure, the procedure will not be called using the normal call/return instructions. Instead, the return
address will be stored in a procedure-local variable, '_return,’ and the call will be executed by jumping to the start of
the procedure. The return will be executed by jumping to the first statement after the call.

The overhead for thisis two or three data bytes, four to six instructions for the return and eight to ten instructions for
the call. Currently re-entrant functions and functions called indirectly cannot use this pragma.

Chapter

6

Optimization PRAGMAS

These all effect various optimizations done by the compiler. These cannot be used to turn on and off optimizations for
specific parts of the code -- the last one parsed will be the one in effect.

For a complete description of each, including warnings and caveats, please refer to the Optimizations chapter of the
Jalv2 Compiler Options document.

EXPR_REDUCE

Format:

PRAGVA OPT EXPR REDUCE { YES | NO | }

* YES -- expression reduction is performed
NO -- expression reduction is not performed

Expression reduction looks for things like "x * 1' and replaces with "x'. See 'EXPRESSION REDUCTION' in
jalopts.txt for details.

CEXPR_REDUCE

Format:

PRAGVA OPT CEXPR_REDUCE { YES | NO| }
* YES -- constant expression reduction is performed
NO -- constant expression reduction is not performed

Constant expression reduction looks for operations on two constants that can be evaluated at compile time, saving
both time and memory.

nb: disabling thiswill cause the backend code generatorsto fail, so only do so if 'PRAGMA DEBUG CODEGEN
OFF' is specified.

CONST_DETECT

Format:

PRAGVA OPT CONST DETECT { YES | NO | }

Y ES -- enable constant detection
* NO -- disable constant detection

| Optimization PRAGMAS | 16

Look for variables that are defined but are either only assigned once, or are always assigned the same value. When
this happens, replace all occurrences of the variable with the constant.

nb : PRAGMA CLEAR will prevent this option from having any effect unless the variable is only assigned the
constant O.

LOAD_REDUCE

Format:

PRAGVA OPT LOAD REDUCE { YES | NO | }

YES -- Perform load reduction
* NO -- Do not perform load reduction
L oad reduction tracks the value in W and attempts to remove any load into W of avalueit aready holds.

nb: thisis still considered experimental!

TEMP_REDUCE

Format:

PRAGMA OPT TEMP_REDUCE { YES | NO | }

YES -- Perform temporary variable reduction
* NO -- Do not perform temporary variable reduction

Temporary reduction effects complex instructions. For example, without temporary reduction the expression:
a=b+c*d+e

will use three temporary variables. With reduction, it will only use one.

VARIABLE_FRAME

Format:

PRAGVA OPT VARI ABLE FRAME { YES | NO | }

YES -- dllocate variables aframe at atime
* NO -- dlocate variablesindividually

Normally, variables are allocated individually. This allows optimal use of data memory, but means that variablesin
agiven procedure might be spread across multiple banks. Enabling this option will guarantee that all variablesin a
procedure will reside in a single bank.

nb: unlike ' PRAGMA FRAME' above, this affects the entire file.

VARIABLE_REUSE

Format:

PRAGVMA OPT VARI ABLE_REDUCE { YES | NO | }

| Optimization PRAGMAS | 17

* YES -- Perform variable reduction
NO -- Do not perform variable reduction

Variable reduction looks for variables that are assigned, but not used, or used, but not assigned, or neither used nor
assigned. In these cases normally the variable is removed (unlessit is volatile). Turning this off leaves the variable
around.

Chapter

v

Warning

Warning pragmas are in effect until changed (they can be turned on and off at will).

ALL

Format:
PRAGVA WARN ALL { YES | NO}

* YES -- enable all warnings
NO -- disable al warnings

BACKEND

Format:
PRAGVA WARN BACKEND { YES | NO }

* YES -- enable all warnings
NO -- disable al warnings
This turns on debugging of the code generator (currently the translation from pcode --> PIC).

CONVERSION

Format:
PRAGVA WARN CONVERSION { YES | NO | }

* YES -- enable conversion warnings
NO -- disable conversion warnings

Conversion warnings occur when assigning unsigned to signed, or signed to unsigned.

DIRECTIVES

Format:
PRAGVA WARN DIRECTIVES { YES | NO | }

Y ES -- enable directive warnings

* NO -- disable directive warnings

The JAL language has a peculiar feature : the construct:
IF cexpr THEN ... END I F

is actually acompiler directive. If cexpr evaluates to 0, the compiler stops translating the code until it reaches the
corresponding END IF. Thiswarning will simply shows where this construct is used.

MISC

Format:
PRAGVA WVARN MSC { YES | NO | }

* YES -- enable misc. warnings
NO -- disable misc. warning

There are some warnings that are not categorized. This enables or disables them.

RANGE

Format:
PRAGVA WVARN RANGE { YES | NO | }

* YES -- enable out of range warnings
NO -- disable out of range warnings

This enables or disabled “value out of range’ warnings.

STACK_OVERFLOW

Format:
PRAGVA WARN STACK OVERFLOW{ YES | NO | }

YES -- stack overflow resultsin awarning

* NO -- stack overflow resultsin an error

TRUNCATE

Format:
PRAGVA WARN TRUNCATE { YES | NO | }

* YES -- enable the truncation warning
NO -- disable the truncation warning

Truncation can occur when alarger sized value is assigned to smaller one.

Chapter

8

Chip Specification

These are used in the chip definition files, not normally by the end user.

CODE

Format:

PRAGVA CODE cexpr

Defines the code size for a device -- used to detect code too large. For the 12 & 14 bit cores, this number isin
WORDs, for the 16 bit cores, this number isin BY TEs. Blame MicroChip.

DATA

Format:
PRAGVA [DATA | SHARED] cexprO['-'cexpr1[',' ...]

Defines arange allowed when alocating variables. DATA accessis assumed to require whatever banking method is
needed for the target, whereas SHARED is assumed to not require these hits.

Note that automatic variable allocation only uses the area denoted by DATA, never the area denoted by SHARED, so
these two can overlap.

EEPROM

Format:
PRAGVA EEPROM cexpr0O ',' cexprl

Defines EEPROM available to the chip. cexpr0 is the ORG used when programming the device, size is the EEPROM
cexprlin bytes.

FUSE_DEF

Format:

PRAGVA FUSE_DEF opt[':'cexpr0] cexprm'{'
tag '='" cexprb

ye

| Chip Specification | 22

Defines symbolic fuse bits so the end user needn't twiddle them directly.
opt -- astring presented to the user
[:cexpr0] -- which config word stores this entry, starting with O
cexprm -- the fuse word is bit-wise ANDed with this before continuing
tag -- the sub-tag
cexprb -- which bit to set
These are used by the end user with the 'PRAGMA TARGET opt tags defined above. In this case the result is similar

to:
_config = (_config & cexprnm) | cexprb
ID
Format:
PRAGVA | D cexprQO ',' cexprl
Defines ID bytes available to the chip. cexpr0 is the ORG used when programming the device, sizeisthe ID cexprlin
bytes.
STACK
Format:
PRAGVA STACK cexpr
Defines the hardware stack size for adevice -- used to detect stack overflow.
TARGET CPU
Format:
PRAGVA TARGET CPU cexpr
Analogous to:

CONST target_cpu = cexpr

Set the target CPU. cexpr should be one of the constants from come from chi pdef . j al .

TARGET BANK

Format:

PRAGVA TARGET BANK cexpr
Analogous to:

CONST target _bank_size = cexpr

| Chip Specification | 23

Set the target's data bank size. The default is 128 bytes.

TARGET PAGE

Format:

PRAGVA TARGET PAGE cexpr

Analgousto:
CONST target page_size = cexpr

Set the target's code page size. The default is 2048 words. Thisis not used in the 16 bit cores.

TARGET INST

Format:

PRAGVA TARGET | NST cexpr
Analogous to:
CONST target instruction_set = cexpr

Set the instruction set to be used by the compiler. This pragmais optiona for most PICs but is needed for certain

PICswith avariant on certain instruction sets used by MicroChip. This pragmawill only be present in device files for
which thisis needed, otherwise it is omitted.

Chapter

9

Debugging

Thefollowing are only useful when debugging compiler errors.

CODEGEN

Format:
PRAGVA DEBUG CODEGEN { YES | NO | }

* YES -- Enable the back_end code generation
NO -- Disable the back_end code generation
Allow the pcode to be generated without executing the PIC code generator.

PCODE

Format:
PRAGVA DEBUG PCODE { YES | NO | }

Y ES -- show the pcode in the asm file

* NO -- don't show the pcode in the asm file

	Contents
	Introduction
	Chip Configuration
	Target CHIP
	TARGET CLOCK
	TARGET FUSES
	TARGET opt tags

	Compiler Configuration
	2.1. BOOTLOADER
	BLOADER
	LOADER18 [cexpr]
	LONG_START
	RICKPIC

	CLEAR
	EEDATA
	FUSE
	IDDATA
	TASK

	Global Configuration
	ERROR
	NAME
	SIZE
	SPEED

	PROCEDURE/FUNCTION Configuration
	FRAME
	INLINE
	INTERRUPT
	* NORMAL
	FAST
	RAW

	JUMP_TABLE
	KEEP
	NOSTACK

	Optimization PRAGMAs
	EXPR_REDUCE
	CEXPR_REDUCE
	CONST_DETECT
	LOAD_REDUCE
	TEMP_REDUCE
	VARIABLE_FRAME
	VARIABLE_REUSE

	Warning
	ALL
	BACKEND
	CONVERSION
	DIRECTIVES
	MISC
	RANGE
	STACK_OVERFLOW
	TRUNCATE

	Chip Specification
	CODE
	DATA
	EEPROM
	FUSE_DEF
	ID
	STACK
	TARGET CPU
	TARGET BANK
	TARGET PAGE
	TARGET INST

	Debugging
	CODEGEN
	PCODE

